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Abstract

Augmentative biological control, especially in field situations, can be complex but there are novel

or incompletely explored directions for research and methods development that may lead to

improved future performance. At the fundamental level, augmentation faces inherent ecological/

behavioural challenges such as enemy dispersal, pest refugia and deleterious interactions within

predator/parasitoid guilds. However, these may be addressed by the choice of natural enemies

with specific or manipulatable dispersal capabilities which attack hosts when most vulnerable.

Integration of augmentative biological control with other control methods has not been sufficiently

explored. One promising partner is the sterile insect technique (SIT) and related technologies such

as conditional-lethality and genetic-drives that perform best at low and declining pest densities and

should interact well, even synergistically, with natural enemy augmentation. Other candidates for

integration with augmentative biological control include the addition of plants that support natural

enemies, infochemicals such as kairomones that could lead pests to occupy more vulnerable

microhabitats and even certain pesticides. At the production level, new or not widely adopted

technologies for mass-rearing can lower costs. For example, host irradiation simplifies the handling

of parasitoids, improves sanitation, facilitates the movement of natural enemies across borders

and allows hosts to be exposed in sentinel-traps. Parasitoid rearing expenses could be halved

by using thelytokous strains such as those resulting fromWolbachia infections. In some cases, hosts

for specialist parasitoids can be obtained inexpensively from the unwanted sex of mass-reared

pests: another advantage of integration with SIT. While many innovations are now costly, scien-

tifically sophisticated and planned for use in regional-scale projects, new techniques and genetic

modifications could become widely available to the agricultural industry.

Keywords: Sterile insect technique, Infochemicals, Conservation biological control, Sex-ratio, Irradiation,

Pesticides

Review Methodology: Journal articles and books were located by internet searches based on the keywords augmentation,

augmentative biological control, predator, parasitoid, dispersal, nonadditive effects, competition, intra-guild predation, sterile insect

release, irradiation, pheromone, kairomone, sex ratio, Wolbachia, pesticides and their various combinations. Additional papers were

discovered among the citations in these and other materials in the author’s library. Issues and topics were discussed with colleagues

who brought still more studies to the author’s attention.

Populations of natural enemies grow with those of their

prey, but are often a step behind, reproduce more slowly

or even fail to maintain themselves locally because of

seasonal absence of hosts/food in agricultural environ-

ments [1]. As a result, pests can reach economically

damaging levels before they are located by predators or

parasitoids or these become sufficiently abundant to

suppress herbivore populations [2]. Early augmentation

can reintroduce enemies to an area or give them

an opportunity to dampen the initial growth phase of

herbivore numbers (inoculative release). If natural ene-

mies are continually released, they maintain artificially
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high predation levels that force incipient pest populations

to still lower levels (augmentative release sensu stricto).

Thus, to repeatedly release appropriate numbers of

effective natural enemies at proper places and times,

when the equivalent is unlikely to occur naturally, is the

essence of augmentative biological control. This sounds

deceptively simple. In practice, particularly in the field

situations addressed here, it can be complex and there are

many ways, and combinations of ways, for augmentation

to fail. An oft-discussed survey concluded that augmented

natural enemies were able to manage field pests eco-

nomically in only ~20% of well-controlled experiments

[3, 4] and that failures were the result of a dozen causes

as diverse as pest-refugia and predator-cannibalism.

Yet, augmentation in the field has its enthusiastic sup-

porters. Even conservative estimates find it effective, if

not necessarily economic, at least 1/5 of the time and

there is a highly experienced cadre of practitioners

who believe it is practical in many other cases that have

been as yet difficult to experimentally confirm [5–8].

Recent thorough field studies have followed augmentation

from the costs of natural enemies to positive profits

from the crop [9], and a public understanding of the

environmental consequences of insecticide alternatives

may raise the cost-threshold for use of biological control

(e.g. pesticide taxes [10, 11]).

The following is by no means an exhaustive review

of augmentative biological control, its problems and

potentials; there are a number of excellent, more com-

prehensive reviews relevant to natural enemy augmenta-

tion e.g., Cônsoli et al. [12], Gurr and Kvedaras [13],

Reynolds [14] and Williams [15]. Rather, it is an attempt

to highlight what seem to be novel or incompletely

explored directions for research and methods develop-

ment. These are organized as follows: (1) ecological

challenges that augmentative biological control can

face and tactics used to confront them; (2) integration of

augmentation with other forms of control; and (3) new

(or not widely adopted) techniques that promise to

improve natural enemy mass-production and hence lower

the costs of augmentation.

Ecological Challenges and Possible Solutions

Collier and Van Steenwyk [3] discuss why many aug-

mentation experiments have failed to find significant

pest suppression. Several of the more difficult to address

ecological/environmental reasons are revisited in order to

appreciate in a better manner what sort of research might

be needed to advance augmentative biological control.

Enemy dispersal and pest immigration

Once released, natural enemies may deliberately move

away from the target area for a number of reasons

including low host densities and high levels of competition

[16]. A classic case of unwanted dispersal stems from the

non-reproductive physiological state of aggregated, over-

wintering coccinellids. When field-harvested and then

released, they typically disperse from target sites within

24 h [17, 18]. This movement may be mitigated by the

use of flightless morphs [19, 20]. In Trichogramma spp.,

propensity to disperse can be estimated beforehand by

examination of wing size [21] and perhaps shape [22].

Natural enemy behaviour may be modified to minimize

dispersal [23]. Continuous exposure of the ichneumonid

Mastrus ridibundis (Gravenhorst) to its codling moth (Cydia

pommonella [L.]) host prior to release results in a ~40-fold

decrease in its dispersal rate [24] while dispersal of the

aphid parasitoid Aphelinus asychis Walker is positively

related to the size of the released cohort [25].

Numerous and diverse plants emit volatiles when under

attack that then attract natural enemies (herbivore-

induced plant volatiles (HIPV)) [26]. Enemies could be

held in target sites by embedding synthetic versions of the

plant’s ‘call for help’ in the field [27] or physiologically/

genetically modifying crop/companion plants to increase

the volume/specificity of the signal [28]. As in any rela-

tively new technology there are large numbers of

unknowns and potential problems whose solutions will

ultimately determine its future usefulness [29]. However,

two of these concerns might be mitigated in the case of

augmentative biological control: (1) Hyperparasitoids and

parasitoids of predators also respond to HIPVs [30, 31].

Evolutionary relationships between these fourth trophic

level responders and plants are unclear, but Brassica oler-

acea L. under attack by Pieris rapae (L.) (Pieridae) cater-

pillars already parasitized by the braconid Cotesia

glomerata (L.) are induced to emit approximately twice the

amount of an HIPV compound attractive to hyperpar-

asitoids as do those being eaten by unparasitized larvae

[31]. When natural enemies are augmented they would

probably swamp populations of their own enemies and if

the released insects seasonally disappear then build-ups of

4th level consumers might return to their original pre-

release levels. (2) Pulling parasitoids or predators into a

specific location could denude the surrounding region of

natural enemies: ‘robbing Peter to pay Paul’ [32]. With

augmentation substantial numbers of new enemies are

added locally and these might eventually disperse to raise

mortality over an even greater area.

Other plant-based products and green leaf volatiles that

presumably act as arrestants, increase parasitism by Tri-

chogramma spp. [33] although not all field trials have been

successful [34]. Extracts from kairomones, such as lepi-

dopteran eggs and scales, have also produced mixed

results in the field [34, 35]. Once arrested, there is a

danger that uniformly dispersed host-cues will confuse

foraging natural enemies and prevent them from locating

prey that act as point sources of kairomones. Sticky-

glandular and hooked plant trichomes entrap insects

and hold their carrion where it attracts and maintains
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a number of hemipteran and spider predators [36].

Perhaps the spreading of zoo-foods such as the corpses of

easily reared Drosophila spp. might be useful for holding

mass-released predators in a target site.

Assuming that beneficial insects will diffuse from a

target site into adjacent habitat, the size of the area to be

treated will influence how easily a suitable natural enemy

density can be maintained. That is because the relative

length of a field’s perimeter increases at a lower rate than

its area (for a square, 4n versus n2), so that the boundary

across which augmented natural enemies may wander

and/or pests from outside continue to immigrate is rela-

tively greater in a smaller target site [37]. How large an

area should be treated and at what release rate are often

difficult problems to resolve [38]. One means of address-

ing both issues might be to test different enemy densities

in various sized plots. The plot size at which a negative

linear relationship between natural enemy numbers and

plant damage appears would be the minimum area that

needs to be treated. That is, at smaller plot sizes immi-

gration and emigration would confound the effect of

release rate and make it a poor predictor of crop loss.

Release rates could then be estimated from that mini-

mum-area relationship of enemy density with herbivory.

If no relationship occurs at the largest practical plot

sizes then augmentation may not be an economic

solution to that particular pest problem. Such otherwise

laborious experiments might be simplified by the use of

Response Surface experimental designs and statistical

methods [39].

Pest refugia

Asymptotic dose response curves are common in aug-

mentative control and this can be attributed to some

proportion of pests occupying refugia that place them

beyond the reach of particular natural enemies [40].

These protected pests invalidate the assumption that

continually higher natural release rates will result in

continually higher pest mortality. As an example of pest-

refugia, tephritid fruit fly larvae in larger fruit are more

difficult for their opiine braconid parasitoids to reach

with their ovipositors [41]. When releases are made into

environments with large fruit, such as commercially-

grown species bred for unusual size, it would be best to

augment larval-prepupal parasitoids with longer oviposi-

tors, or better yet egg-prepupal species that forage for

relatively shallowly-placed eggs [42]. Refugia can change

over time as well as among habitats. Lettuce aphids,

Nasonovia ribisnigri (Mosely), eventually move to inhabit

the tightly packed leaves at the heart of more mature

Romaine lettuce. Once there, predators and parasitoids

have limited access [43]. Natural enemies, such as certain

Syrphidae that are adept at exploiting the early-season

infestations that still occur in low densities on relatively

open leaves have the best chance of exerting control [44].

Deleterious natural enemy interactions

Intraguild predation in terms of biological control is the

consumption of natural enemies of a target pest by their

fellow target pest predators and parasitoids [45]. For

instance, generalist predaceous beetles that consume

both aphids and aphid parasitoids or facultative hyper-

parasitoids can result in decreased capacity by parasitoids

to exert control [46]. If the intraguild predator with

broader appetite does not subsequently consume more of

the target pest than would have its intraguild victims, then

overall control will decline [47]. Mutual interference is

where the behaviour of one natural enemy influences

that of another, often to leave the host patch. Inter-

ference can be both intra- and interspecific and result

in asymptotic mortality relationships between enemy and

prey densities [48]. There are characteristics that help

suggest which combinations of natural enemies are

more or less likely to engage in intraguild predation [46].

However, these may not be easy to predict a priori [49,

50] and mutual interference can be an issue in the absence

of predation. For example, when enemies forage for the

same prey in the same manner and at the same time they

are functionally redundant and adding species to the guild

should increase its diversity but leave prey suppression

unaffected. However, combined augmentation of the

relatively similar Trichogramma ostrininae Pang et Chen and

T. nubilale Ertle and Davis resulted in lower European corn

borer, Ostrina nubilalis Hüber, egg parasitism than either

species released individually, probably as a result of mutual

interference [51].

Biological control can affect natural enemy diversity

and host/prey diversity the efficacy of biological control.

Augmentative releases could have long-term effects on

natural enemy guild structure, e.g. if the mass-release of a

superior intrinsic competitor eliminates an inferior [52].

On the other hand, prey diversity can generate apparent

competitions, the asymmetric effect of shared natural

enemies on multiple hosts, which go on to provide sub-

stantial additional pest suppression. The addition of a

rapidly reproducing host could result in larger than pre-

vious numbers of a parasitoid that also attacks the more

slowly reproducing original target [53]. Prey diversity can

provide a diverse predator diet and improve nutrition

and survival [54]. However, all the above may more likely

influence population dynamics over multi-generational

time. They are not peculiar to, and perhaps not char-

acteristic of, periodic inundations by a possibly ephemeral

natural enemy.

Opportunities for Integrated Augmentative

Biological Control

Integration of augmentative biological control with

other control methods has not been sufficiently explored

in many agricultural systems [40]. A recent review
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addressed the integration of biological control in general

with sterile insect technique (SIT), host plant resistance,

induced plant defences (previously discussed) and cultural

techniques, all of which, and others, have applicability to

augmentation in particular [14].

Sterile insect technique (SIT)

The SIT, and similar technologies where modified pests

are reared and then released into the field, has entered

into a Renaissance [55, 56]. New sexing strains eliminate

females early in their development and will dramatically

cut costs and improve efficacy [57], conditional lethalities

where the offspring of released insects perish outside the

permissive mass-rearing environment remove the need

for damaging irradiation to induce sterility [58], the

capacity to genetically manipulate insect endosymbiotic

bacteria, Wolbachia and others, will foster development

of cytoplasmic-incompatibilities, an alternative means of

sterilization [59], and also the basis of genetic-drive

systems to force desired genes into pest populations [60].

Most of these, including genetic drives, work better as

pest densities fall and so would benefit from combination

with a suppression-technique that is effective at high pest

densities, e.g., augmentative biological control [60, 61].

The felicity of this relationship, with its possibility of

synergistic control [62, 63], has long been recognized in

SIT programmes, particularly those that provide barriers

to the movement of tephritid fruit flies and fruit infesting

Lepidoptera across national borders or into fly-free/low-

prevalence agricultural zones [64–66].

Increased plant diversity

Even augmented parasitoids and predators [67], not

expected to survive indefinitely or continue to maintain

their populations after releases stop, may require food

and shelter, and could benefit from having alternative

hosts/prey [54]. Landscape modifications, often the addi-

tion of flowering plants to agroenvironments to provide

floral/extrafloral nectar for adult parasitoids can con-

centrate and conserve natural enemies [68–70] and may

also sustain those that are periodically introduced en

masse. In one case, additions of flowers to vineyards did

little to potentiate and conserve augmented Trichogramma

[71]. However, for the most part, what plant recourses

are necessary and how much would be adequate for a

large influx of parasitoids remains to be determined.

Nectar plants are mimicked to a degree by sugar foods

and while there is substantial evidence that sugar solution

sprays increase endemic natural enemy abundance and

diversity, if not crop-profits [72], an attempt to enhance

the efficacy of mass-released Trichogramma spp. with sugar

was unsuccessful [73]. Better results were obtained by

simply feeding parasitoids honey prior to release [73–75].

Besides food and shelter, added-plants can concentrate

hosts/prey and perhaps multiply the numbers of natural

enemies. Trap plants, for instance, those that receive

pests in ‘push-pull systems’, could be specific targets for

natural enemy augmentation, particularly if the hosts/

prey are relatively vulnerable once they are repelled

from the crop and attracted to the trap [76, 77]. Added

banker-plants that harbour alternative prey/hosts early

in the season might multiply argumentatively released

natural enemies in time for them to attack the target

pest in the primary crop [78]. Periodic additions of crop

plants previously inoculated with predators or parasitoids

can be a particularly effective manner of augmentative

release [79].

Lesser appreciated infochemicals

Avoiding the perceived risks presented by natural enemies

is energetically costly, physiologically stressful, results in

lost feeding and reproductive opportunities and can

have similar effects on mortality and population growth as

direct predation [80, 81]. Pisurid spiders with functional

mouthparts and those glued shut inflicted similar mor-

talities on Melanoplus femurrubrum De Geer grasshoppers

[82], and up to 80% of the effect of damsel bug (Nabis

spp.: Nabidae) predation on pea aphid, Acyrthosiphon

pisum Harris, population growth is owing to behavioural

responses of prey to the risks predators pose rather

than direct predation [83]. The tension between eating

and being eaten creates a ‘landscape of fear’ that influ-

ences when, where and for how long herbivores will

choose to feed, e.g., spiders with and without functional

mouthparts caused similar movements of grasshoppers

from grasses to structurally more complex and sheltering

herbs [84].

Could fear be used to enhance augmentative biological

control? For example, to concentrate pests or cause them

to move to microhabitats where they are more vulnerable

to the mass-released natural enemy. An instance of the

desired effect can be found in pea aphids which drop to

the ground in the presence of coccenelid predators where

they are vulnerable to Carabidae. The resulting mortality

rates are nearly double than additive predation by the two

beetles species alone [85, 86]. Cues suggesting the pre-

sence of a predator might be as effective at eliciting risk-

related behaviours as the predator itself. The sight of even

dead predators causes Lepidoptera and Hymenoptera to

avoid flowers [87] and spider silk alone deters herbivory

by both Mexican bean beetles (Epilachna varivestes

Muisant) and Japanese beetles (Popillia japonica Newman)

[88]. There is an indication that volatile chemicals are

involved in the latter effect which raises the possibility

of their synthesis and application as a stressor and goad

to movement. It might even be possible to genetically

transform plants to produce predator-cues. When pests

have alarm pheromones, as in aphids, these can elicit
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similar behaviours as direct evidence of a natural enemy

and they have been genetically inserted into a transformed

wheat strain ([89, 90]; however, see [91]).

Pesticides

Broad spectrum pesticides that kill or damage natural

enemies are obviously not conducive to simultaneous

augmentative biological control and are generally seen as

an impediment to progress by beneficial insect producers.

Even organic-certified insecticides generally considered

to be benign can have detrimental effects on predators,

parasitoids and pollinators [92]. A recent and graphic

example of the indirect costs of pesticides is the improved

biological control of aphids in various Chinese crops

following the wide-spread adoption of Bt varieties and the

resulting decrease in sprays [93].

However, insecticides can be integrated into certain

forms of augmentation and pesticides can sometimes

have minimal effects on important natural enemies. For

example, larval Trichogramma spp. are often sheltered

in their host-eggs from toxins and their augmentative

releases have been successfully integrated into insecticide

treatments for O. nubilalis [9]. Some pesticides are

extremely benign. Since Trichogramma have a single larval

instar and larvae do not moult they are unaffected by

ecdysone agonist tebufenozide [94]. Alternatively, a strain

of Trichogramma chilonis Ishii has been developed whose

adults are resistant to endosulfan insecticides [95]. Pro-

tein + insecticide ‘bait-sprays’ are applied as droplets to

suppress tephritid fruit flies. The braconid parasitoids of

these flies are not attracted to the bait and are relatively

unaffected by the spinosad toxicant allowing augmentative

releases to be combined with pesticide treatments [96].

However, even bait sprays can have unintended con-

sequences [97] and certain classes of non-targets have

attracted little concern, e.g., Lepidoptera larvae and other

large herbivores that consume droplets they are not

necessarily attracted to.

Techniques for Mass-Rearing and Release

Irradiation

Removal or sterilization of unparasitized hosts has a

number of benefits for mass-rearing and augmentative

biological control. For example, tephritid fruit fly larvae

are routinely irradiated prior to their exposure to bra-

conid parasitoids [98, 99]. Since factory parasitism typi-

cally ranges from 50 to 90% large numbers of pests could

be included in parasitoid cohorts destined for release.

However, at the proper radiation dosage, adult hosts fail

to develop, but parasitism is unaffected or even improved

[100, 101]. This much simplifies the handling and dis-

tribution of the parasitoids, improves factory sanitation,

facilitates the movement of natural enemies across

borders and quarantine barriers and allows hosts to be

exposed in sentinel-traps without the danger of their

escape and reinfesting treated areas.

Host irradiation can also preserve hosts for long

periods until they are required for parasitoid rearing; e.g.,

calypterate fly pupae used in production of idiobiont

ectoparasitoids [102, 103]. Radiation slows the develop-

ment of Cotesia flavipes Cameron, a braconid parasitoid

of larval Lepidoptera. With the addition of cool tem-

peratures this allows the storage of pupae and can defer

emergence by about 30 days [104].

Modified parasitoid sex ratios

There can be considerable economic advantages to mass-

rearing and dispersing all-female (thelytokous) strains/

species of parasitoids [105]. Only females generally con-

tribute to pest mortality and some costs of augmentation

could be cut in half by not investing in the production

of males. Thelytokous hymenopteran populations are not

uncommon in nature and are often the result of infection

by intracellular endosymbiotic bacteria, particularly var-

ious strains of Wolbachia pipientis [106]. Unfertilized eggs

destined to be males are transformed into diploid females

by either prevention of chromosome reduction during

meiosis or through postmeiotic fusion of two haploid

mitotic products [107].

To be practical, all-female strains must meet two

assumptions: (1) arrhenotokous (haplo-diploid bi-sexu-

ality) and thelytokous females must have at least similar

abilities to locate and oviposit into hosts and (2) thely-

tokous populations have a greater capacity for increase

under mass-production conditions. Wolbachia infections

can induce effects other than sex-ratio distortions and

infected individuals might be inferior biological control

agents. Infected Aphytis melinus DeBach (Aphelinidae)

suffer decreased fecundity and longevity [108]. A com-

parison of arrhenotokous and thelytokous lines of

Trichogramma cordubensis Vargas and Cabello and T. deion

Pinto and Oatman found that arrhenotokous insects,

created through the application of antibiotics to thelyto-

kous females, had higher fecundity and dispersed further

in laboratory tests [109]. However, there were no dif-

ferences in dispersal in greenhouses, and the absence

of males made thelytokous wasps preferable. Seemingly

minor differences between all-female and bisexual strains

have been identified in foraging behaviours of figitids

[110]. Attack rate, but not host-handling time, was unaf-

fected by Wolbachia infection in Trichogramma brassicae

Westwood [111] and the bacteria had no effect on

fecundity in T. atopovirilia Oatman and Platner [112].

Wolbachia infection may even be beneficial. Certain Wol-

bachia are capable of increasing the fecundity of Drosophila

melanogaster Meigen hosts by influencing iron utilization

in restricted or overloaded diets [113], while others
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increase the fecundity and lifespan of Aedes spp. hosts

[114, 115].

The second assumption underlying the proposed

superiority of thelytokous mass-rearing cultures is that

the absence of males lowers production costs per female.

As noted above, some strains of Wolbachia increase life-

span in D. melanogaster, but this effect can disappear when

males and females are placed together, as they would be

under mass-rearing conditions [116]. If the symptoms

of infected parasitoids are similarly density-dependent,

this could influence population growth rates and even

eliminate the advantage of all-female rearing colonies.

Two challenges face the adoption of Wolbachia induced

thelytoky, the accumulation of deleterious alleles in

the absence of sexual reproduction [117] and how such

strains are to be obtained in the first place. Although

artificial horizontal transfers of Wolbachia through micro-

injections of infected tissue into novel hosts are possible

[118], they have proven difficult and the infections are

often transient [119]. Alternatively, thelytokous strains

could be obtained by: (1) systematically searching for all-

female populations guided by evolutionary theory for

evolution and maintenance of sex. One effort at this has

failed [120]; (2) attempt horizontal transfers through

super- (or multi-) parasitism, a means by which infections

may be transmitted in nature [121, 122] and (3) genetically

modify Wolbachia already present in the wasp to produce

sex-ratio distortions.

Female perceptions of host quality can also be

manipulated to yield more female-biased sex ratios. Since

size has a greater influence on the fitness of parasitoid

daughters than on sons, ovipositing females that can

estimate host size tend to lay diploid-female eggs in larger

hosts [123]. By gradually increasing the sizes of leafminer

hosts exposed to the eulophid Diglyphus isaea (Walker)

the % male progeny decreased from 58 to 48% [124].

Simply mixing large and small hosts had a similar effect

on sex ratio and resulted in females that had the same

biological control-quality as those reared under the

standard all-large-hosts procedure [125].

Host acquisition

The use of more easily reared factitious hosts can be

a double-edged sword. On the positive side, cost savings

in mass-rearing can make augmentation feasible. For

instance, the ability to rear Trichogramma spp. on the eggs

of grain feeding moths, thus eliminating the expense of

maintaining plants for target pest egg-stock, allowed fur-

ther development of egg-parasitoid augmentative control

[126]. The negative side is that a natural enemy reared on

a factitious host is by its nature not a specialist and

there is the possibility of non-target effects and loss of

focus on control aims. This is not always an issue, for

instance, there may be few vulnerable non-targets in the

release sites [127], and in some cases hosts for specialist

parasitoids can be obtained from the unwanted sex

of mass-reared pests [128]. For example, the sexually

dimorphic development period of the Caribbean fruit fly,

Anastrepha suspensa (Loew) (Tephritidae), allows mature

female larvae to be easily separated from males destined

for SIT releases. Female larvae can then be used as

hosts for argumentatively-released braconids such as

Diachasmimorpha longicaudata (Ashmead). These larvae

are rarely completely parasitized and in a further step,

the pupae from larvae exposed to larval parasitoids

can be re-exposed to pupal parasitoids if the latter do

not successfully superparasitize the primary parasitoid

[129, 130]. In vitro rearing has the potential to reduce

augmentative biological costs, but even the relatively

successful case of Trichogramma faces a number of chal-

lenges when scaled up to mass-production levels, such as

local lack of automation and sanitation [131].

Conclusions

If and when the efficacy of augmentation becomes further

established, research is likely to flow towards such an

elegant and environmentally friendly technique. From the

perspective of one who has worked on tephritid fruit fly

augmentative biological control, a multi-scientist, long-

term, multi-government-funded project, the scientific

future of such relatively well financed undertakings that

address regional and international agricultural problems

looks particularly promising. However, the scale and

expense of this research and its implementation is con-

siderably beyond what many would consider the typical

practice of natural enemy augmentation. For example, in

order to produce and apply the up to 50 million para-

sitoids a week Mexico releases in support of fly-free and

low-fly-prevalence agricultural zones, the Mosca Fruta

programme has access to the production of a tephritid

mass-rearing factory employing scores of workers, an

irradiator for host-treatment and aircraft for delivery.

Some of the other research and method developments

discussed require genetic manipulations, quarantine facil-

ities and sophisticated chemical analyses that might be

difficult for a small-scale insectary business to duplicate.

On a positive entrepreneurial note, many of these

techniques and genetic modifications could become

increasingly available, their production privatized and then

sold to the state. Analogous to the US space programme,

there will be technical spin-offs and industry can some-

times use expensive government equipment such as

a particle beam accelerator for sterilization (e.g., Florida

Department of Agriculture and Consumer Services,

Division of Plant Industry, Gainesville, Florida, USA).
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